POINT DERIVATIONS IN CERTAIN SUP-NORM ALGEBRAS(1)

BY S. J. SIDNEY(2)

1. Let A be a closed point-separating subalgebra of C(X) containing the constants, where X is a compact Hausdorff space. M_A will denote the space of multiplicative linear functionals φ on A, and to each such φ we associate its kernel A_{φ} . The A_{φ} are precisely the maximal ideals of A.

Under certain hypotheses, it is known that analytic discs can be embedded in M_A . Wermer [W1] showed that if A is a Dirichlet algebra on X, then each Gleason part of A is either a single point or an analytic disc. Hoffman [H] then generalized Wermer's result to logmodular algebras. Finally Lumer [L] observed that the conclusion is really "local": if φ has a unique representing measure on X, then the part for A containing φ consists either of φ alone or of an analytic disc.

Our objective in this paper is to take the weakest of these possible hypotheses, namely Lumer's, and show that in a broader sense the analytic disc at φ , if there is one, really does account for all the analytic structure at φ . Specifically, we show that all the bounded derivations and higher "derivatives" of A at φ are just differentiations with respect to the analytic structure of the analytic disc.

2. All measures will be regular Borel measures on X; they will be nonnegative real-valued unless they are called complex, in which case they will be complex-valued.

Let $\varphi \in M_A$. Then there is a measure μ representing φ , i.e., $\varphi(f) = \int f d\mu$ for all $f \in A$. If there is only one such measure, we will say that φ satisfies condition (U) (for unique). Lumer [L] has shown that condition (U) guarantees the validity of essentially all the logmodular theory of Hoffman's paper [H, §§4–6] as applied to φ . We use this fact freely in the sequel. We shall require two additional facts based on Lumer's paper.

THEOREM 1. Suppose $\varphi \in M_A$ and μ is a measure representing φ . Then φ satisfies (U) if and only if μ satisfies (U') $\int u \ d\mu = \sup \{ \operatorname{Re} \varphi(f) : f \in A, \operatorname{Re} (f) \leq u \}$ for all $u \in C_R(X)$.

Proof. This result is, even strongly generalized, quite familiar (see, for example,

Received by the editors December 20, 1966 and, in revised form, March 9, 1967.

⁽¹⁾ This work comprises a portion of the author's doctoral dissertation [S], written under the direction of Professors Andrew M. Gleason and Lynn H. Loomis and accepted by Harvard University in June 1966.

⁽²⁾ Research partially supported by National Science Foundation Graduate Fellowship.

[A]). Clearly (U') \Rightarrow (U), since if ν were a second measure representing φ we would have for all $u \in C_R(X)$

$$\int u \, d\mu = \sup \left\{ \operatorname{Re} \varphi(f) : f \in A, \operatorname{Re} (f) \leq u \right\}$$

$$= \sup \left\{ \int \operatorname{Re} (f) \, d\nu : f \in A, \operatorname{Re} (f) \leq u \right\}$$

$$\leq \int u \, d\nu \leq \inf \left\{ \int \operatorname{Re} (f) \, d\nu : f \in A, \operatorname{Re} (f) \geq u \right\}$$

$$= \inf \left\{ \operatorname{Re} \varphi(f) : f \in A, \operatorname{Re} (f) \geq u \right\} = \int u \, d\mu,$$

hence $\int u \, d\nu = \int u \, d\mu$.

Conversely, suppose (U') is false and select $u \in C_R(X)$ such that $\int u \, d\mu > \alpha = \sup \{ \operatorname{Re} \varphi(f) : f \in A, \operatorname{Re} (f) \leq u \}$. Define a (real) linear functional L on the (real) subspace of $C_R(X)$ spanned by $\operatorname{Re} (A)$ and u, setting $L(\operatorname{Re} (f) + ru) = \operatorname{Re} \varphi(f) + r\alpha$. It is easily seen that L is a positive functional, hence has norm L(1) = 1. Then one finds a measure ν representing L, i.e., ν represents φ and $\int u \, d\nu = \alpha$. This last equality shows that $\nu \neq \mu$, hence (U) fails to hold. \square

Recall that the relation $\varphi \sim \varphi' \Leftrightarrow \|\varphi - \varphi'\|_{A^{\bullet}} < 2$ is an equivalence relation on points of M_A , and the equivalence classes are the (Gleason) parts for A (see for example [H, §7]). We denote the part containing φ by P_{φ} . The following fact is not actually necessary, but may make it easier for the reader to justify our use of some of Hoffman's results; combined with the aforementioned validity of §4–6 of Hoffman's paper, it immediately guarantees in addition the validity of §7 of Hoffman's paper for any φ satisfying condition (U).

THEOREM 2. Suppose φ satisfies condition (U) and $\varphi' \in P_{\varphi}$. Then φ' satisfies condition (U), and if μ and μ' are the representing measures for φ and φ' respectively, then μ and μ' are mutually bounded absolutely continuous.

- **Proof.** In the proof of Theorem 6 in [L], Lumer shows that if μ' is any representing measure for φ' then μ' is boundedly absolutely continuous with respect to μ . Suppose now μ_1 and μ_2 are two representing measures for φ' . Choose nonnegative real functions h_1 , $h_2 \in L^{\infty}(\mu)$ with $d\mu_j = h_j d\mu$. Then $g = h_1 h_2 \in L^1(\mu)$ and $f \in A \Rightarrow \int fg \ d\mu = 0$. Since g is real-valued, $f \in A + \overline{A} \Rightarrow \int fg \ d\mu = 0$. By Theorem 6.7 of [H], g = 0 a.e. (μ) , so $\mu_1 = \mu_2$. \square
- 3. A derivation of A at φ is a linear functional D on A satisfying the usual product rule for derivatives: $D(fg) = D(f) \cdot \varphi(g) + \varphi(f) \cdot D(g)$. The existence of a nonzero derivation at φ is equivalent to $A_{\varphi} \neq A_{\varphi}^2$. [Note: If I is an ideal in A, I^n is the ideal generated by products $f_1 \cdots f_n$ with $f_i \in I$ if $n \ge 1$, and $I^0 = A$; also, \overline{I} denotes the closure of I.] Similarly, the properness of the inclusion $A_{\varphi}^3 \subset A_{\varphi}^2$ may be thought of as signifying a sort of second-derivative phenomenon, etc. In this same vein, the existence of a nonzero continuous derivation at φ is equivalent to $A_{\varphi} \neq (A_{\varphi}^2)^-$, and so on.

We can now state the main result of this paper.

THEOREM 3. Suppose $\varphi \in M_A$ satisfies condition (U). Then either $P_{\varphi} = \{\varphi\}$, in which case $A_{\varphi} = (A_{\varphi}^2)^-$ and hence $A_{\varphi} = (A_{\varphi}^n)^-$ for all $n \ge 1$, or there is a homeomorphism h of the open unit disc D in the complex plane onto P_{φ} (in the A^* metric topology) such that (D, h) is an analytic disc at φ (i.e., $h(0) = \varphi$ and $\hat{f} \circ h$ is analytic for all $f \in A$, where \hat{f} is the Gelfand transform of f). In the latter case, $(A_{\varphi}^n)^-/(A_{\varphi}^{n+1})^-$ is 1-dimensional and $(A_{\varphi}^n)^-$ consists of those $f \in A$ for which $\hat{f} \circ h$ vanishes at 0 to order at least n, for each $n \ge 0$.

The description of P_{φ} as either a point or a disc is of course contained in the papers of Hoffman and of Lumer. Our contribution is the description of the ideals $(A_{\varphi}^n)^-$ for $n \ge 2$.

Theorem 3 is proved in the next section. In that section φ will denote a multiplicative linear functional satisfying condition (U) and μ will denote its representing measure. Many of the arguments will look familiar, a point about which we shall make more comment later.

4. We begin with a mild variant of a standard result from the Dirichlet-log-modular theory [W2, Lemma 5].

LEMMA 4. Suppose I is an ideal of $A, f \in L^{\infty}(\mu)$, and f lies in the $L^{2}(\mu)$ closure of I. Then we can find a sequence $\{f_{n}\}$ in I such that

$$||f_n|| = \sup \{|f_n(x)| : x \in X\} \le ||f||_{\infty}$$

and $f_n \rightarrow f$ a.e. (μ) .

Proof. The proof is actually the same as Wermer's. One uses Theorem 1 instead of the Dirichlet property at a key point, and observes that if Wermer's f_n are in I, so are his h_{ν} . Glicksberg has also observed that this generalization holds [G, remark after Theorem 2.1].

Briefly, assume (as we may) that $||f||_{\infty} = 1$ and let $\{k_n\}$ be a sequence in I with $||f-k_n||_2 \to 0$. Define $u_n = -\operatorname{Log}^+ |k_n| \in C_R(X)$. One shows that $\int u_n \, d\mu \to 0$. Use Theorem 1 to pick $g_n \in A$ with Re $(g_n) \le u_n$, Im $\varphi(g_n) = 0$, and Re $\varphi(g_n) > \int u_n \, d\mu - 1/n$. Then $||\exp(g_n)|| \le 1$ and $\varphi(\exp(g_n)) \to 1$, from which one shows that $\exp(g_n) \to 1$ in $L^2(\mu)$. Setting $f_n = k_n \exp(g_n) \in I$, it follows that $f_n \to f$ in $L^1(\mu)$. Since $||f_n|| \le 1$, a subsequence of $\{f_n\}$ satisfies the conclusion of the lemma. \square

LEMMA 5. Suppose $L \in (A_{\varphi}^n)^{\perp}$ for a positive integer n, i.e., L is a continuous linear functional on A which annihilates A_{φ}^n . Let λ be a complex measure representing L and let $\lambda = \lambda_a + \lambda_s$ be its Lebesgue decomposition with respect to μ . Then λ_a represents L, i.e., λ_s annihilates A.

Proof. We use induction on n. The case n=1 is the F. and M. Riesz theorem [H, Theorem 6.5]. Suppose N>1 and we know the lemma for $1 \le n < N$. Let $L \in (A_{\omega}^{N})^{\perp}$ have the complex representing measure λ .

Let $g \in A_{\varphi}^{N-1}$ and define $L_1 \in A_{\varphi}^{\perp}$ by $L_1(f) = L(fg)$. If $d\lambda_1 = g \ d\lambda$ then λ_1 represents L_1 , so the case n = 1 tells us that $(\lambda_1)_s$ annihilates A, i.e., $f \in A \Rightarrow \int fg \ d\lambda_s = \int f \ d(\lambda_1)_s = 0$. Taking f = 1 we obtain $\int g \ d\lambda_s = 0$.

Thus λ_s annihilates A_{φ}^{N-1} , so by our induction assumption $\lambda_s = (\lambda_s)_s$ annihilates A. \square

REMARK. A rather different and in some ways more satisfactory route to Lemma 5 is available. Ahern [A] has observed that, in considerably more generality than we need here, the F. and M. Riesz theorem can be made to follow from a lemma patterned after a theorem of Forelli [F, Theorem 1]. Glicksberg [G] has carried out this program in a form quite convenient for us: his proof of the F. and M. Riesz theorem [G, Theorem 1.1] from a Forelli-type lemma [G, Lemma 1.2] can be trivially modified to give our Lemma 5 for all n simultaneously.

We have instead used the proof above for two reasons. First, Hoffman's paper [H] is our basic text, and our proof seems to be the quickest route from Hoffman's paper to Lemma 5. Second, this (admittedly trivial) proof is evidently applicable to a perhaps much larger class of situations: we have a projection $\lambda \to \lambda_s$ satisfying certain conditions (the conclusion of the F. and M. Riesz theorem) relative to an algebra A and an ideal I, and we draw the same conclusion for the ideals I^n ; it is possible to reformulate the entire affair in purely algebraic terms, and conclude that if a certain kind of projection "satisfies an F. and M. Riesz theorem" with respect to a suitable algebra A and ideal I, then it also "satisfies an F. and M. Riesz theorem" with respect to A and I^n .

 $H^p(\mu)$ denotes the closure of A in $L^p(\mu)$, $1 \le p < \infty$, and $H^\infty(\mu) = H^2(\mu) \cap L^\infty(\mu)$. Lemma 4 and bounded convergence show that $H^\infty(\mu)$ consists of the a.e. (μ) pointwise limits of bounded sequences in A, hence is a Banach algebra when endowed with a.e. (μ) pointwise operations and the L^∞ norm. Let $H^p_\sigma(\mu) = \{f \in H^p(\mu) : \int f d\mu = 0\}$, $1 \le p \le \infty$. In particular, if $1 \le p < \infty$, then $H^p_\sigma(\mu)$ is the L^p closure of A_σ .

 $\varphi' \in P_{\varphi}$ has a unique representing measure μ' , and μ and μ' are mutually boundedly absolutely continuous. Thus the spaces $L^p(\mu)$ and $L^p(\mu')$ are identical as function spaces, as are $H^p(\mu)$ and $H^p(\mu')$, $1 \le p \le \infty$, and the respective pairs of norms are equivalent.

For each $f \in L^1(\mu)$ we can therefore define a function \hat{f} on P_{φ} by $\hat{f}(\varphi') = \int f d\mu'$. Clearly this agrees with the usual notion of $\hat{f}|P_{\varphi}$ if $f \in A$. Further, $f \to \hat{f}(\varphi')$ is a bounded linear functional on $L^1(\mu)$ (hence on $L^p(\mu)$, $1 \le p \le \infty$) for each $\varphi' \in P_{\varphi}$.

LEMMA 6 (see [H, Theorem 5.1]). $f \to \hat{f}(\varphi')$ is multiplicative on $H^2(\mu)$ for each $\phi' \in P_{\varphi}$, in the sense that if $f, g \in H^2(\mu)$ then $fg \in H^1(\mu)$ and $(fg)^{\hat{}}(\varphi') = \hat{f}(\varphi') \cdot \hat{g}(\varphi')$. In particular, $f \to \hat{f}(\varphi')$ is multiplicative on $H^{\infty}(\mu)$.

LEMMA 7. If $L \in (A_{\varphi}^n)^{\perp}$ for a positive integer n, L extends to $L_1 \in L^{\infty}(\mu)^*$ in such a way that $||L_1|| = ||L||$, L_1 annihilates $(H_{\varphi}^{\infty}(\mu))^n$, and L_1 is weakly continuous, i.e., if $\{f_j\}$ is a bounded sequence in $L^{\infty}(\mu)$ and $f_j \to g$ a.e. (μ) then $L_1(f_j) \to L_1(g)$.

1968]

Proof. Select λ a complex measure representing L such that $\|\lambda\| = \|L\|$. Lemma 5 shows that $d\lambda = h d\mu$ for some $h \in L^1(\mu)$. Lemma 4 then can be used to see that $L_1(f) = \int f d\lambda$ will do. \square

THEOREM 8. Suppose $P_{\varphi} \neq \{\varphi\}$. Then there is a homeomorphism h of the open unit disc D onto P_{φ} (in the A^* metric topology) such that (D, h) is an analytic disc at φ . If h_1 and h_2 are two such functions then $h_1^{-1} \circ h_2$ is an analytic homeomorphism of D onto itself. Any such function h satisfies:

- (a) $\hat{f} \circ h$ is analytic for each $f \in H^2(\mu)$.
- (b) If $L \in (A_{\varphi}^n)^{\perp}$ for a positive integer n and L_1 is the extension of L to $L^{\infty}(\mu)$ guaranteed by Lemma 7, then $L_1|H^{\infty}(\mu)$ has the form $L_1(f) = \sum_{k=0}^{n-1} a_k (d^k/dz^k)(\hat{f} \circ h)(0)$ for appropriate constants a_0, \ldots, a_{n-1} .

Proof. Theorems 7.6 and 7.4 of [H] imply the existence of a $Z \in H_{\varphi}^{\infty}(\mu)$ with the following properties:

- (i) |Z| = 1 a.e. (μ) .
- (ii) \hat{Z} maps P_{φ} (in the A^* metric topology) homeomorphically onto D.
- (iii) The function $f \sum_{k=0}^{m} (\int \overline{Z}^k f d\mu) Z^k$ is in $Z^{m+1} H^2(\mu)$ whenever $f \in H^2(\mu)$ and m is a nonnegative integer.
 - (iv) $\varphi' \in P_{\varphi}, f \in H^2(\mu) \Rightarrow \hat{f}(\varphi') = \sum_{k=0}^{\infty} (\int \overline{Z}^k f \, d\mu) \hat{Z}(\varphi')^k$.

Then $h = (\widehat{Z}|P_{\varphi})^{-1}$ satisfies everything except (b), and we now verify (b). Define $a_k = L_1(Z^k)/k!$ for $0 \le k \le n-1$. Then $a_k(d^k/dz^k)(\widehat{f} \circ h)(0) = (\int \overline{Z}^k f \, d\mu) L_1(Z^k)$ for $f \in H^2(\mu)$. If $f \in H^{\infty}(\mu)$ then (i) and (iii) show that $f - \sum_{k=0}^{n-1} (\int \overline{Z}^k f \, d\mu) Z^k$ is in $Z^n H^{\infty}(\mu) \subseteq (H^{\infty}_{\varphi}(\mu))^n$, so $L_1(f - \sum_{k=0}^{n-1} (\int \overline{Z}^k f \, d\mu) Z^k) = 0$ and therefore

$$L_1(f) = \sum_{k=0}^{n-1} \left(\int \overline{Z}^k f \, d\mu \right) L_1(Z^k) = \sum_{k=0}^{n-1} a_k (d^k / dz^k) (\hat{f} \circ h)(0).$$

This proves (b).

Now let h' be a second function mapping D homeomorphically and analytically onto P_{φ} . Then $h^{-1} \circ h'$ is a homeomorphism of D onto itself. Lemma 4 permits us to find a bounded sequence $\{f_j\}$ in A such that $f_j \to Z$ a.e. (μ) . Then $\hat{f_j}|P_{\varphi} \to \hat{Z}$ pointwise, so $\hat{f_j} \circ h' \to \hat{Z} \circ h'$ pointwise. Since $\hat{f_j} \circ h'$ is analytic by hypothesis, so is $\hat{Z} \circ h' = h^{-1} \circ h'$. Thus $h^{-1} \circ h'$ is a diffeomorphism. This also implies that (a) and (b) hold for h', completing the proof. \square

PROPOSITION 9. Let Z be as in Theorem 8, $h = (\hat{Z}|P_{\varphi})^{-1}$, n a positive integer. Define L on A by $L(f) = (d^{n-1}/dz^{n-1})(\hat{f} \circ h)(0)$. Then $L \in (A_{\varphi}^{n})^{\perp}$, but $L \notin (A_{\varphi}^{n-1})^{\perp}$.

Proof. Using the Cauchy integral representation for derivatives, $|L(f)| \le (n-1)! \|f\|$, so $L \in A^*$. $f \in A_{\varphi} \Rightarrow f = f - (\int \overline{Z}^0 f \, d\mu) Z^0 \Rightarrow f \in ZH^{\infty}(\mu)$ by (iii), so $f \in A_{\varphi}^n \Rightarrow f = Z^n g$ where $g \in H^{\infty}(\mu)$. Therefore $(\hat{f} \circ h)(z) = z^n \cdot (\hat{g} \circ h)(z)$ where $\hat{g} \circ h$ is analytic on D, so L(f) = 0. Therefore $L \in (A_{\varphi}^n)^{\perp}$.

On the other hand, Lemma 4 enables us to select a bounded sequence $\{f_j\}$ in A_{φ} such that $f_j \to Z$ a.e. (μ) . Then $\hat{f_j}|P_{\varphi} \to \hat{Z}$ pointwise, so $\hat{f_j} \circ h \to \hat{Z} \circ h$ pointwise. It follows that $L(f_j^{n-1}) \to (n-1)!$ while $f_j^{n-1} \in A_{\varphi}^{n-1}$. Thus $L \notin (A_{\varphi}^{n-1})^{\perp}$.

Theorem 8 and Proposition 9 prove that portion of Theorem 3 dealing with the case $P_{\varphi} \neq \{\varphi\}$. The case $P_{\varphi} = \{\varphi\}$ will now be covered by showing that if $A_{\varphi} \neq (A_{\varphi}^2)^-$ then there is a nontrivial analytic disc at φ .

Let V denote the closure in $L^2(\mu)$ of A_{φ}^2 . Clearly $V \subseteq H_{\varphi}^2(\mu)$.

LEMMA 10. $A_{\alpha} \neq (A_{\alpha}^2)^- \Rightarrow H_{\alpha}^2(\mu) \neq V$.

Proof. Select f_0 in A_{φ} but not in $(A_{\varphi}^2)^-$. Then $f_0 \in H_{\varphi}^2(\mu)$.

We can find $L \in (A_{\varphi}^2)^{\perp}$ such that $L(f_0) \neq 0$. Suppose $f_0 \in V$. By Lemma 4 we can select a bounded sequence $\{f_j\}$ in A_{φ}^2 such that $f_j \to f_0$ a.e. (μ) . On the one hand $L(f_j) = 0$. On the other hand, Lemma 7 implies that L is weakly continuous, hence $L(f_j) \to L(f_0) \neq 0$, a contradiction. Thus $f_0 \notin V$. \square

THEOREM 11. If $A_{\varphi} \neq (A_{\varphi}^2)^-$ there exists $G \in H_{\varphi}^{\infty}(\mu)$ satisfying

- (i) |G| = 1 a.e. (μ) .
- (ii) G spans $H^2_{\omega}(\mu) \cap V^{\perp}$.
- (iii) $GH^2(\mu) = H^2_{\varphi}(\mu)$.

Proof. This will be a familar invariant subspace argument, and will really be the proof of the following more general theorem (see, e.g., [SW, Theorem 3.1]): If M is a singly invariant closed subspace of $L^2(\mu)$ (i.e., the closed linear span of $A_{\varphi}M$ is a proper subspace of M) then $M = GH^2(\mu)$ where |G| = 1 a.e. (μ) .

By Lemma 10 we can select $G \in H_{\varphi}^2(\mu) \cap V^{\perp}$ such that $||G||_2 = 1$. We show that (i), (ii) and (iii) hold.

$$f \in A_{\varphi} \Rightarrow Gf \in V \Rightarrow Gf \perp G \Rightarrow \int f|G|^2 d\mu = 0.$$

Thus $|G|^2 d\mu$ represents φ , so uniqueness of μ gives (i).

If (ii) is false we can find orthonormal G_1 , $G_2 \in H^2_\varphi(\mu) \cap V^\perp$. Let (a_1, a_2) be a pair of complex constants such that $|a_1|^2 + |a_2|^2 = 1$. Then $a_1G_1 + a_2G_2 \in H^2_\varphi(\mu) \cap V^\perp$ and $||a_1G_1 + a_2G_2||_2 = 1$, so again $|a_1G_1 + a_2G_2||_2 = 1$ a.e. (μ) . It is easily seen that this cannot hold simultaneously for all such pairs (a_1, a_2) . Therefore (ii) must be true.

In view of (i) and Lemma 6, $GH^2(\mu)$ is a closed subspace of $H^2_{\sigma}(\mu)$. Suppose $g \in H^2_{\sigma}(\mu) \cap (GH^2(\mu))^{\perp}$. Then $f \in A \Rightarrow Gf \in GH^2(\mu) \Rightarrow Gf \perp g \Rightarrow \int \overline{f} \overline{G} g \ d\mu = 0$. On the other hand, $f \in A_{\sigma} \Rightarrow fg \in V \Rightarrow fg \perp G \Rightarrow \int f\overline{G} g \ d\mu = 0$. Thus $\overline{G} g \ d\mu$ annihilates $\overline{A} + A_{\sigma} = A + \overline{A}$, so by Theorem 6.7 of [H] $\overline{G} g = 0$ a.e. (μ) . Because of (i), g = 0 a.e. (μ) . Thus (iii) holds. \square

LEMMA 12. Suppose $A_{\varphi} \neq (A_{\varphi}^2)^-$ and G is as in Theorem 11. Then whenever $f \in H^2(\mu)$ and n is a nonnegative integer, we have $g_n \in G^{n+1}H^2(\mu)$ where

$$g_n = f - \sum_{k=0}^n \left(\int \overline{G}^k f \, d\mu \right) G^k.$$

Proof. Induction on n.

With hypotheses as in Lemma 12, for each $z \in D$ define a linear functional \tilde{z} on

 $L^2(\mu)$ by $\tilde{z}(f) = \sum_{n=0}^{\infty} (\int \overline{G}^n f \, d\mu) z^n$. \tilde{z} is bounded (with norm at most $(1-|z|)^{-1}$) and for each $f \in L^2(\mu)$ the function $z \to \tilde{z}(f)$ is analytic on D.

THEOREM 13. The map $z \to \tilde{z}|A$ is a nontrivial (in fact 1-1) analytic disc at φ . In particular, $A_{\varphi} \neq (A_{\varphi}^2)^- \Rightarrow P_{\varphi} \neq \{\varphi\}$.

Proof. Using Lemma 12 it is easy to see that \tilde{z} is multiplicative on $H^{\infty}(\mu)$, hence on A; since also $\tilde{z}(1)=1$, $\tilde{z}|A\in M_A$. Clearly the map is "analytic", and Theorem 11 leads to $\tilde{0}|A=\varphi$. Thus $z\to \tilde{z}|A$ is an analytic disc at φ . Finally, select a sequence $\{f_j\}\subset A$ such that $f_j\to G$ in $L^2(\mu)$. Then for each $z\in D$, $\tilde{z}(f_j)\to \tilde{z}(G)=z$. Thus the map is 1-1. \square

REMARK. Lemma 12 and Theorem 13 are essentially the argument used by Wermer in [W] and repeated by Hoffman in [H] to put a disc in M_A . Theorem 13 completes the proof of Theorem 3.

5. In this section we use our characterization of the ideal $(A_{\varphi}^n)^-$ to see how certain behavior on X of functions in A can imply their belonging or at least being close to $(A_{\varphi}^n)^-$. Until further notice, we do not assume φ satisfies condition (U).

If $\varphi \in M_A$, a Jensen measure for φ on X is a measure μ of a total mass 1 such that the "Jensen inequality" $\log |\varphi(f)| \le \int \log |f| \ d\mu$ holds for all $f \in A$. Such a μ is easily seen to be an Arens-Singer measure for φ (i.e., $\log |\varphi(f)| = \int \log |f| \ d\mu$ for all invertible $f \in A$) and therefore a representing measure for φ (since Re $(A) \subset \log |A^{-1}|$). Bishop has shown [B] that φ always has a Jensen measure on X.

LEMMA 14. Suppose μ is a Jensen measure for φ and E is a Borel set in X such that $\mu(E) > 0$. Suppose $\{f_j\}$ is a sequence in A and $g \in L^1(\mu)$ is such that $|f_j| \leq g$ a.e. (μ) , and suppose $f_j \to 0$ pointwise on E. Then $\varphi(f_j) \to 0$.

Proof. If $\varepsilon > 0$ is given, select $\delta > 0$ so small that $(\log (\varepsilon) - \int g \ d\mu)/\log (\delta) < \mu(E)$ and $\delta < 1$. If $E_j = \{x \in E : |f_j(x)| < \delta\}$ we can find J so large that $j \ge J \Rightarrow \mu(E_j) > (\log (\varepsilon) - \int g \ d\mu)/\log (\delta)$. Then

$$j \ge J \Rightarrow \log |\varphi(f_j)| \le \int \log |f_j| d\mu$$

$$= \int_{E_j} \log |f_j| d\mu + \int_{X - E_j} \log |f_j| d\mu$$

$$\le \mu(E_j) \log (\delta) + \int g d\mu < \log (\epsilon),$$

so $|\varphi(f_i)| < \varepsilon$. \square

LEMMA 15. Let U and V be open subsets of the complex plane with respective coordinates u and v. Let $\tau \colon U \to V$ be analytic. Then for $1 \le k < \infty$ and $1 \le l \le k$, there exist polynomials $Q_{k,l}$ in k variables x_1, \ldots, x_k such that whenever f is an analytic function on V, we have

$$(f \circ \tau)^{(k)}(u) = \sum_{l=1}^{k} Q_{k,l}(\tau'(u), \ldots, \tau^{(k)}(u)) f^{(l)}(\tau(u)), \quad 1 \leq k < \infty.$$

Proof. Induction on k. \square

If $\{T_{\alpha}\}$ is a family of subspaces of A, a sequence $\{f_j\}$ in A will be said to converge to $\{T_{\alpha}\}$, written $f_j \to \{T_{\alpha}\}$, if $\lim_j (\sup_{\alpha} \inf \{\|f_j - g\| : g \in T_{\alpha}\}) = 0$. An easy application of the Hahn-Banach theorem shows that this is equivalent to the following: if S is the closed unit ball in A^* , then $f_j \to 0$ uniformly on $\bigcup_{\alpha} (S \cap T_{\alpha}^{\perp})$ where f_j is interpreted as being in A^{**} .

THEOREM 16. Suppose φ satisfies condition (U) and μ is a representing measure for φ . Suppose E is a Borel set in X and $\mu(E) > 0$. Suppose $\{f_j\}$ is a bounded sequence in A such that $f_j \to 0$ pointwise on E. Then for each positive integer n,

$$f_j \to \{A_{\varphi'}^n : \varphi' \in F\}$$

where F is any metrically compact subset of P_{φ} .

Proof. Let $\varphi' \in P_{\varphi}$ have representing measure μ' . By Theorem 2 φ' satisfies condition (U) and since φ' has a Jensen measure on X, μ' must be that Jensen measure. Lemma 14 then implies that $\varphi'(f_j) \to 0$. Thus $\hat{f_j} \to 0$ pointwise on P_{φ} .

If $P_{\varphi} = \{\varphi\}$ then Theorem 3 says $(A_{\varphi}^n)^- = A_{\varphi}$ and we are done.

Assume $P_{\varphi} \neq \{\varphi\}$ and let Z be as in Theorem 8, $h = (\hat{Z}|P_{\varphi})^{-1}$. $\{\hat{f}_j \circ h\}$ is a bounded sequence of analytic functions on D such that $\hat{f}_j \circ h \to 0$ pointwise, hence for every nonnegative integer k, $(\hat{f}_j \circ h)^{(k)} \to 0$ uniformly on any compact subset of D.

We must show that $f_j \to 0$ uniformly on $\bigcup \{S \cap (A_{\sigma}^n \cdot)^{\perp} : \varphi' \in F\}$. We will accomplish this by finding a sequence of positive constants $\{c_k\}$ such that $L \in S \cap (A_{\sigma}^n \cdot)^{\perp}$ for some $\varphi' \in F$ implies $|L(f_j)| \leq \sum_{k=0}^{n-1} c_k ||(f_j \circ h)^{(k)}| \hat{Z}(F)||$. Since $\hat{Z}(F)$ is a compact subset of D, $(\hat{f}_j \circ h)^{(k)} \to 0$ uniformly on $\hat{Z}(F)$, and the theorem will be proved. We define the c_k inductively by $c_0 = 1$ and $c_k = (1/k!) + \sum_{s=0}^{k-1} c_s/(k-s)!$ for k > 0.

Suppose $\varphi' \in F$. Let Z' be constructed for φ' as in Theorem 8 and set $h' = (\hat{Z}'|P_{\varphi})^{-1}$. Define an analytic function $\tau = \hat{Z} \circ h' : D \to D$. ((a) in Theorem 8 shows that τ is indeed analytic.)

Let $L \in S \cap (A_{\varphi'}^n)^{\perp}$ be given and let L_1 be the extension of L guaranteed by Lemma 7. By Theorem 8 $L_1|H^{\infty}(\mu)$ has the form $L_1(f) = \sum_{k=0}^{n-1} a_k (\hat{f} \circ h')^{(k)}(0)$. Lemma 15 then implies that $L_1|H^{\infty}(\mu)$ has the form $L_1(f) = \sum_{k=0}^{n-1} b_k (\hat{f} \circ h)^{(k)} (\hat{Z}(\varphi'))$. We will be done if $|b_k| \leq c_k$ for all k. This we show by induction on k.

Observe that $|L_1(Z^k)| \le ||L_1|| = ||L|| \le 1$ for all $k \ge 0$. Applied to the case k = 0 this gives $|b_0| \le 1 = c_0$.

Suppose $1 \le K \le n-1$ and $|b_k| \le c_k$ for $0 \le k < K$. Then

$$1 \ge |L_1(Z^K)| = \left| \sum_{s=0}^{n-1} b_s(\hat{Z}^K \circ h)^{(s)}(\hat{Z}(\varphi')) \right|$$

$$= \left| \sum_{s=0}^K K! b_s(\hat{Z}(\varphi'))^{K-s} / (K-s)! \right|$$

$$= K! \left| b_K + \sum_{s=0}^{K-1} b_s(\hat{Z}(\varphi'))^{K-s} / (K-s)! \right|$$

so that

$$|b_K| \le \frac{1}{K!} + \left| \sum_{s=0}^{K-1} b_s (\hat{Z}(\varphi'))^{K-s} / (K-s)! \right| \le \frac{1}{K!} + \sum_{s=0}^{K-1} c_s / (K-s)! = c_K.$$

COROLLARY 17. Let φ , μ and E be as in Theorem 16. Suppose $f \in A$ and f | E = 0. Then

$$f \in \bigcap \{(A_{\omega'}^n)^- : \varphi' \in P_{\omega}, 1 \leq n < \infty\}.$$

REFERENCES

- [A] P. R. Ahern, On the generalized F. and M. Riesz theorem, Pacific J. Math. 15 (1965), 373-376.
- [B] E. Bishop, Holomorphic completions, analytic continuation and the interpolation of seminorms, Ann. of Math. 78 (1963), 468-500.
 - [F] F. Forelli, Analytic measures, Pacific J. Math. 13 (1963), 571-578.
- [G] I. Glicksberg, The abstract F. and M. Riesz theorem, J. Functional Analysis 1 (1967), 109-122.
- [H] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.
- [L] G. Lumer, Analytic functions and Dirichlet problem, Bull. Amer. Math. Soc. 70 (1964), 98-104
- [S] S. J. Sidney, Powers of maximal ideals in function algebras, Thesis, Harvard Univ., Cambridge, Mass., 1966.
- [SW] T. P. Srinivasan and J. Wang, "Weak*-Dirichlet algebras," in *Function algebras*, edited by F. T. Birtel, pp. 216-249, Scott, Foresman and Company, Chicago, Ill., 1966.
 - [W1] J. Wermer, Dirichlet algebras, Duke Math. J. 27 (1960), 373-382.
- [W2] ——, Seminar über Funktionen-Algebren, Lecture Notes in Mathematics, No. 1, Springer-Verlag, Berlin, 1964.

HARVARD UNIVERSITY,

CAMBRIDGE, MASSACHUSETTS
YALE UNIVERSITY,

NEW HAVEN, CONNECTICUT